Exploiting Unlabeled Data for Improving Accuracy of Predictive Data Mining

نویسندگان

  • Kang Peng
  • Slobodan Vucetic
  • Bo Han
  • Hongbo Xie
  • Zoran Obradovic
چکیده

Predictive data mining typically relies on labeled data without exploiting a much larger amount of available unlabeled data. The goal of this paper is to show that using unlabeled data can be beneficial in a range of important prediction problems and therefore should be an integral part of the learning process. Given an unlabeled dataset representative of the underlying distribution and a K-class labeled sample that might be biased, our approach is to learn K contrast classifiers each trained to discriminate a certain class of labeled data from the unlabeled population. We illustrate that contrast classifiers can be useful in one-class classification, outlier detection, density estimation, and learning from biased data. The advantages of the proposed approach are demonstrated by an extensive evaluation on synthetic data followed by real-life bioinformatics applications for (1) ranking PubMed articles by their relevance to protein disorder and (2) cost-effective enlargement of a disordered protein database.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Type2 Diabetes Using Data Mining Algorithms

Background and purpose: Today, information systems and databases are widely used and in order to achieve higher accuracy and speed in making diagnosis, preventing the diseases, and choosing treatments they should be merged with traditional methods. This study aimed at presenting an accurate system for diagnosis of diabetes using data mining and a heuristic method combining neural network and pa...

متن کامل

Detecting Suspicious Card Transactions in unlabeled data of bank Using Outlier Detection Techniqes

With the advancement of technology, the use of ATM and credit cards are increased. Cyber fraud and theft are the kinds of threat which result in using these Technologies. It is therefore inevitable to use fraud detection algorithms to prevent fraudulent use of bank cards. Credit card fraud can be thought of as a form of identity theft that consists of an unauthorized access to another person's ...

متن کامل

Using Weighted Nearest Neighbor to Benefit from Unlabeled Data

The development of data-mining applications such as textclassification and molecular profiling has shown the need for machine learning algorithms that can benefit from both labeled and unlabeled data, where often the unlabeled examples greatly outnumber the labeled examples. In this paper we present a two-stage classifier that improves its predictive accuracy by making use of the available unla...

متن کامل

Improving Simulation Accuracy of a Downsized Turbocharged SI Engine by Developing a Predictive Combustion Model in 1D Simulation Software

In this paper we aim to develop a predictive combustion model for a turbocharged engine in GT-Power software to better simulate engine characteristics and study its behavior under variety of conditions. Experimental data from combustion was initially being used for modelling combustion in software and these data were used for model calibration and result validation. EF7-TC engine was chosen for...

متن کامل

A New Homogeneity Inter-Clusters Measure in SemiSupervised Clustering

Many studies in data mining have proposed a new learning called semi-Supervised. Such type of learning combines unlabeled and labeled data which are hard to obtain. However, in unsupervised methods, the only unlabeled data are used. The problem of significance and the effectiveness of semi-supervised clustering results is becoming of main importance. This paper pursues the thesis that muchgreat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003